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Example 4.3.4. Use the Leibniz rule and the chain rule to prove the quotient rule.

Proof. By the Leibniz rule, we have

@)-(3) -rder (Y
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For () ,lety = %, where u = g(z). Then, by the chain rule,
g
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Example 4.3.5. Find
A Vaira
dx '

Solution.

d :
d—y = eViite, (\/:1;2 +z) (using the chain rule; writey = ", u = /22 + )
x

varts 1

=e 5(1:2 + az)’% -(2z +1) (using the chain rule again: let u = vw,w = z* + z)

Exercise 4.3.1. Prove that
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4.3.1 Some tricks involving the log function and its derivative

Example 4.3.6. Show that

d 1
%lnkc]:;, x # 0.
Proof. Let
1 _ JInz, ifx>0
y=ljel= In(—z), ifz<0
(/»hue U=r-X
Fora:>0,;i—i:%; _ﬂ ~ %7 dq — Xj‘j&/,(/t
TRyl o) B TR
Forx<0,j—i:_i$-(—l):%. (by the chain rule) — L Zas
- __X(—O O
2 = L
Example 4.3.7. Let y = i/(x — i)ﬁx{)— 3) . Find j—i x
b :
Solution. /ZM o = b AMA
o E-2E-sp
z—5 j\/,@é)‘;&/,a f-&lo
TN [t i
T —95
dé'¢“‘9> 3lny = In(z—2)+2In(x —3) —In(z —5H) D= .éy,(}é’?—) {{17-(4;)&»2
X sdy _ 1 2 1 A Lo (v-2) ddru
_ Oe 1%" ydz z—2 -3 x-—5 W = d
e dy Y 1 2 1
;{/K g do 3<m2+x3_az5) — éééz 4y
dy  1./z—2)@—32( 1 2 1 A
% ‘:] dr 3\/ z—5 (m—2+x—3_x—5> P ( o 1
Z dv “ T ox-2
Y Ax [

Remark. Alternatively, one may regard y as a function of = defined “implicitly” via the
relation (x — 5)y3 = (z — 2)(z — 3)2. (Cf. Chapter 5.)
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bnx
Example 4.3.8. Compute the derivative of z*, x > 0. X = <
K (X
Solution. Write 2% = e*"*, Let y = e*, where u = zInx. Then K _ WB _ ¢
! t:) _ )0 — e €
(b wee Q{‘) 4, dydu
Cin / dx du dx ~ eu
dx dinz
al ( — et(InaE
L& iz 4 T b«
u 1 — T T
=e"(Inz + x;) AQ y
=z"(lnx +1). ﬂ [2( &4)(>
A - ]

Exercise 4.3.2. Let y = f(2)/®). Prove that y/ = f(x)?® (g/(x) In f(x) + J;/((;C))g(a;))
b= 4 4.1
a4 = 4
4 by = L] )

(

oty S b+ b
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Example 4.3.8. Compute the derivative of z*, z > 0.

Solution. Write z* = ¢*'*?, Let y = ¢%, where u = zInz. Then

d , dydu
dz” " dudzs
:e“(lnwdﬁ+$dlnx)
dx . dx
:e“(lnx+$;)
=2%(Inx +1).

Exercise 4.3.2. Let y = f(2)/®). Prove that y/ = f(x)?® (g’(x) In f(x) + J;l((;c))g(:r)>
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Chapter 5: Differentiation II

Learning Objectives:

(1) Use implicit differentiation to find slope.
(2) Discuss inverse function and its derivatives.
(3) Study the higher order derivative.

5.1 Differentiating Implicit Functions and Inverse Functions

5.1.1 Implicit functions o= i (% 9)\ YL“' ﬂ\’__ >C i

Example 5.1.1. Consider the circle on the = — y plane defined by z? + y?> = 25. Find the
equation of the tangent line to the circle at (3,4).

Solution. Method 1. Express y in terms of = explicitly.

- p/(’x?’

—J 2 =

e 2GR

Restrict to a small neighbourhood of the point (3, 4) on the curve, y > 0 can be uniquely

given by y = v/25 — z2.

24+ =25 =y=+V25—22

5-1
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So,
.
v= V25 — 2
when z = 3,y = —2. The equation of the tangent line to the curve at (3,4) is
A/t N Pon.mi_ C%’l7> {/\/}I
3 on ‘L"”(‘]
y—4=——(x—3), -
4 b n &
3 .2 -y
V=Tt S = _Z
N o
Method 2. Implicit differentiation. ﬁu[g- {a) = 3 CX’B>

Regard y as a function y(x) without explicit formula. Differentiate both sides of z2+3? =

. . d
25 with respect to x, and then solve algebraically for %2.

49" dw
& 49 AX

d 4
92 el -
x+d$(y) 0

2x —1—_2/yZy =0 (chain rule)
T

dy _ =
der vy
So,
dy _3
dofgg 4

Then, find the tangent line in the same way as with Method 1.

Remark. Method 2 is referred to as implicit differentiation, which is very useful to compute
derivatives of functions not defined by explicit formulae.

Example 5.1.2. Let y = f(z) be a differentiable function of z that satisfies the equation

. ..d .
2%y + y? = 2. Find the derivative d—y as a function of both z and y.
X

Solution. You are going to differentiate both sides of the given equation with respect to .
So that you will not forget that y is actually a function of x, temporarily use the alternative
notation f(x) for y, and begin by rewriting the equation as

(@) + ([(@) = 2.
Ul 2 >\ 2 2
Ty = 407 = 2 :
24y dy dy

— Az Zd9 Ay ay
T 0T+ 2 = 2SN ST
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Now differentiate both sides of this equation term by term with respect to x:

d d
—x[a:2f(x) +(f(2)?] = %[953]
5.1)
~» 24/ L 2f(x)df 32 (
e +f(x)dx(w )|+ dx '
Thus, we have
Y fa)er) + 2f<x>§ff; = 32
~> [:U2 + 2f(x)]% = 32— 2z f(x) (5.2)
dy  3a®—2xf(x)
Tdr T a2+ 2f(z)
Finally, replace f(x) by y to get
dy 3x2 — 2wy
dv ~ 2242y
|

Remark. By default, d—z is regarded as a function of x, and we want an expression for % in
terms of x only. However, sometimes it is difficult to express y in terms of z explicitly. In this
case it'll be specified in the test or homework question that it is ok to leave the answer for ¢/’
as a function of both z and y. Or, sometimes finding the value for ¢/ is only an intermediate
step in solving the problem. If the values of x and y are known, one may directly plug in
these values to the expression of ¢ in z and y, without going through an explicit formula for
y' in z.

Summary: Carrying out Implicit Differentiation

d
Suppose an equation defines y implicitly as a differentiable function of x. To find ﬁ:

1. Differentiate both sides of the equation with respect to x. Remember that y is really a
function of x, and use the chain rule when differentiating terms containing .

2. Solve the differentiated equation algebraically for ;l—y in terms of z and y.
x

Example 5.1.3. Consider the curve defined by

z® +y® = 9zy.

d . .
1. Compute d—y (It is ok to leave the answer as a function of both z and y.)
i

2. Find the slope of the tangent line to the curve at (4, 2).
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Figure 5.1: A plot of 23 + y* = 9xy. While this is not a function of y in terms of z, the
equation still defines a relation between x and y.

Solution. Starting with
23+ = 9xy,

we apply the differential operator % to both sides of the equation to obtain

d 3 3 d
Ir (m +y ) = dexy.
Applying the sum rule, we see that
d d
I S B
dz”’ + dz” dxgxy'

Let’s examine each of the terms above in turn. To begin,

d
%a::3 = 322

d
On the other hand, —1? is treated somewhat differently. Here, viewing y = y(z) as an
implicit function of x, we have by the chain rule that

= @)’
—3(y())? ¥/ (@)
= 3y2@.

dz
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Consider the final term di(Qxy) Regarding y = y(x) again as an implicit function, we have:
x

%(9@;) = 9i(w -y(x))

dx
=9 (z-y'(2) +y(2))
dy
=9z—= + 9y.
xd:v + 9y
Putting all the above together, we get:
d d
322 + 3y2—y = 93:£ + 9y.
dx dx

. . d .
Now we solve the preceding equation for d—y Write
X

d d
322 + 3y2—y = 9:E—y + 9y

dx dr
d d
== 3y2—y—9x—y = 9y — 32
dx dx
— Z—i (3y2 — 9£L‘) = 9y — 322
d o 2 2
PN dy 9y —32* 3y—ux

de  3y2 -9z  y2 -3z’

5-5

For the second part of the problem, we simply plug in = 4 and y = 2 to the last

. .5
formula above to conclude that the slope of the tangent line to the curve at (4, 2) is T See

Figure 5.2.

Example 5.1.4. Let L be the curve in the z — y plane defined by z2 + 3? 4+ ¢®¥ = 2. Use L
to implicitly define a function y = y(x). Find y/(x) at = 1 and the tangent line to the curve

L at (1,0).

Solution. (Note: In this case, there is no good explicit formula for the function y(z).)

Differentiate the equation z* + y* + ¢®¥ = 2 on both sides with respect to . We get:

2z +2yy’ + e (y+ay’) =0,

— — 2y
N 2z + ey

So, y(1) = 0 and y/[,—1) = —2.

>y —87 y

2y + e
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—6 -

Figure 5.2: A plot of 23 + y3 = 92y along with the tangent line at (4, 2).

Thus, the equation of the tangent line to L at (z,y) = (1,0) is:

y—0=-2(x—1), or
y=—2x+ 2.

5.1.2 Differentiating Inverse Functions

Definition 5.1.1. Consider a function f : A — B, where A is the domain, and B is the
codomain.

The function f is said to be injective if f(x1) # f(x2) whenever z; # xzo for any
21,22 € A. The function f is said to be surjective or onto if Vy € B, dx € A such that
f(z) = y. (In this case, the codomain B of f agrees with the range of f.) The function f is
said to be bijective or one to one if it is both injective and surjective.

If f is one-to-one, then the inverse function, denoted f~! : B — A, is defined by

p= ) iy = f). 1Y /= fr
Remark. ﬁ
1. Only a one-to-one function can have an inverse. /
/ e
EJy %(;&)> X L e~ 2 O - a

—

~ XszD
£ (x) = X
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f—l

2. The domains and codomains(=ranges) of f and f~! are interchanged.

1 -l -\
3. fH(z)isnot —. _ -
f (l’) 1S no f(fL') - ({'(X>> 'FC%‘)
4.
(f'of)(x) =2, forallz in the domain of f
N (fof Y(y) =y, forally inthe domain of f~' (or range of f)
Example 5.1.5.
In %
1. e =X
y = e’
eR,y>0 X
{x =lIny. ! Y € =X

are inverse functions of each other.

y = a2,
{ x>0,y >0
T =./y.

are inverse functions of each other.

3. y =22, 2 € R,y > 0 does not have inverse function because it is not one-to-one.

Question: What is the relation between derivatives of inverse functions?

Suppose y = f(z) has an inverse function, then

z = fH(f(2)).
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b= f09) Hom x = f(ﬁ)

Differentiate both sides with respect to x to get:

L= ()W) @) ) =«

=
YW = 5 dfitfon -4
: Ax ”t" -
or equivalently, — Y
— AL _ Af() av
dy [ AR 0{ ] AX
b A9 -
Example 5.1.6. Use the 1dent1ty e = e” to show that 4 j - A V - ’%(
e Inx = =

Solution. Let y = f(x) = Inz. Then its inverse function is = = €Y.

dy _ d 1 _1 fgﬂ{x’

—

Express the right hand side in terms of x, we have

Zlng = =
dx n x

Or, using implicit differentiation: Differentiate the equation = = ¢¥ on both sides with respect

to . We get: // ﬁ[/j/ %d
1= —~Z  (the chain rule)
d:L‘ dx
dy d 1 1
—~Z =—1In — =
= der dx ey x

Example 5.1.7. Show that

Solution. Lety = \/z, then x = y%. We have:

dyz _dy (dz\7' 1
der  dr \dy
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5-9
Expressing the right hand side in terms of x, we have
dvz _ 1
de 2z’
|

— 3
Example 5.1.8. Let f : R — R be defined by f(z) = 23 + 4z. H?) = Yt

1= 29t ¢

1. Find di f~(z) without writing down an explicit formula for f~*(z).
x

oood oy
2. Find %f (x) -

Solution.

1. Lety = f~(z), i.e., z = f(y). Then

dy 1 1

de ~ ['y)  3y2+4

Alternatively, differentiate both sides of the equation = = y> + 4y with respect to z,
regarding x now as an implicit function of y. We get:

dx dy
dy v dx % 3y2 + 4

1 1

2. When z =5,y = f~1(5) = 1. (Check that f(1) = 5!) So,

v d 1
fy) &l @
(

da . 32+4

/ -
W tY .

y=1

5.2 Higher Order Derivatives

Suppose that an object is moving along a coordinate line, and let ¢ denote the time.
parametrized by t. Let

s =s(t)
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denote the coordinate of the object at time ¢. The velocity (or “instantaneous velocity”) of
the object at time ¢ is:

Notation Let y = f(x).

o ) dy df
1st derivative of f: T dn f(x) f-
Y o A@\—
2nd derivative of f: @*wff () = Ax X
) ) ] . Cl”y _ dn,f e
n-th derivative of f: Ton = gan U (x)
Example 5.2.1. -—D""—J—'CM%):MK(M 03 —
/\24 AX A
1.
e =e, S =a” (na)"
2. y=z",neN.
nn—1)Mn-2)---(n—m+1Lz"™, ifm<n,
ym =Ly —1)(n—-2)---2-1=n!, if m=n,

Example 5.2.2. Let y be defined implicitly by the equation z? + y* 4+ ¢® = 2. Find ¢/ and
1
y'atx = 1.

Solution. Differentiate both sides of the preceding equation with respect to = to get
20 +2yy + ey +xy) =0. ————(1)
Then differentiate both sides of the equation with respect to = one more time to get

242y + 2y + ey + 2y ) + V(2 +2y") =0 ————(2)
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